Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant-microbe interactions.

نویسندگان

  • Ping He
  • Libo Shan
  • Jen Sheen
چکیده

Recent studies have uncovered fascinating molecular mechanisms underlying plant-microbe interactions that coevolved dynamically. As in animals, the primary plant innate immunity is immediately triggered by the detection of common pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs). Different MAMPs are often perceived by distinct cell-surface pattern-recognition receptors (PRRs) and activate convergent intracellular signalling pathways in plant cells for broad-spectrum immunity. Successful pathogens, however, have evolved multiple virulence factors to suppress MAMP-triggered immunity. Specifically, diverse pathogenic bacteria have employed the type III secretion system to deliver a repertoire of virulence effector proteins to interfere with host immunity and promote pathogenesis. Plants challenged by pathogens have evolved the secondary plant innate immunity. In particular, some plants possess the specific intracellular disease resistance (R) proteins to effectively counteract virulence effectors of pathogens for effector-triggered immunity. This potent but cultivar-specific effector-triggered immunity occurs rapidly with localized programmed cell death/hypersensitive response to limit pathogen proliferation and disease development. Remarkably, bacteria have further acquired virulence effectors to block effector-triggered immunity. This review covers the latest findings in the dynamics of MAMP-triggered immunity and its interception by virulence factors of pathogenic bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effector-triggered and pathogen-associated molecular pattern-triggered immunity differentially contribute to basal resistance to Pseudomonas syringae.

Pathogens induce pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) in plants. PAMPs are microbial molecules recognized by host plants as nonself signals, whereas pathogen effectors are evolved to aid in parasitism but are sometimes recognized by specific intracellular resistance proteins. In the absence of detectable ETI determining clas...

متن کامل

MAMP (microbe-associated molecular pattern) triggered immunity in plants

Plants are sessile organisms that are under constant attack from microbes. They rely on both preformed defenses, and their innate immune system to ward of the microbial pathogens. Preformed defences include for example the cell wall and cuticle, which act as physical barriers to microbial colonization. The plant immune system is composed of surveillance systems that perceive several general mic...

متن کامل

Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline

Plants are continuously monitoring the presence of microorganisms to establish an adapted response. Plants commonly use pattern recognition receptors (PRRs) to perceive microbe- or pathogen-associated molecular patterns (MAMPs/PAMPs) which are microorganism molecular signatures. Located at the plant plasma membrane, the PRRs are generally receptor-like kinases (RLKs) or receptor-like proteins (...

متن کامل

The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity.

The Pseudomonas syringae type III protein secretion system (T3SS) and the type III effectors it injects into plant cells are required for plant pathogenicity and the ability to elicit a hypersensitive response (HR). The HR is a programmed cell death that is associated with effector-triggered immunity (ETI). A primary function of P. syringae type III effectors appears to be the suppression of ET...

متن کامل

Validation of RT-qPCR Approaches to Monitor Pseudomonas syringae Gene Expression During Infection and Exposure to Pattern-Triggered Immunity.

Pseudomonas syringae pv. tomato DC3000 is an important model plant pathogen, with a fully annotated genome and multiple compatible plant hosts. Very few studies have examined the regulation of DC3000 gene expression in vivo. We developed a quantitative reverse transcription-polymerase chain reaction assay to monitor transcriptional changes in DC3000 inoculated into Arabidopsis thaliana leaves d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular microbiology

دوره 9 6  شماره 

صفحات  -

تاریخ انتشار 2007